<u>Properties and Potential Water Quality Effects</u> of Post-2000 Coal Combustion Products

2003/2004 Powell River Project Annual Progress Report

W. Lee Daniels, Mike Beck and Matt Eick Dept. of Crop and Soil Environmental Sciences, 0404 Virginia Tech, 540/231-7175; wdaniels@vt.edu

Introduction and Overall Objectives

In the mid-1990's, we conducted a detailed study of the properties and environmental behavior of coal fly ash in SW Virginia mining environments (Daniels et al., 2002). That cooperative Powell River Project research program focused specifically on coal fly ash materials that were generated in the mid-Atlantic region from coals mined in SW Virginia. However, as discussed below, the basic properties and nature of coal combustion products (CCP's) have changed considerably in the past 5 to 10 years, and further significant changes to properties important for their utilization in mining environments are likely over the next 5 years. For example, the potential for Se release from valley fills and coal waste piles is currently under detailed scrutiny in our region due to very low (\leq 5 ppb) water quality criteria and higher observed discharge levels in West Virginia. Similarly, the USEPA is currently re-evaluating its policy position on utilization of CCP's in mining environments, has recently issued more stringent regulations for As in ground water, and will be proposing new rules on Hg release from coal fired plants. This study was initially funded in January of 2004 with the following multi-year objectives:

- 1. To determine the basic chemical and physical properties of a large set of modern CCP's generated by combustion of SW Virginia coals, including FGD materials and fly ash produced by emerging air emission control technologies.
- 2. To estimate the likely effect of changes in coal combustion technologies such as low NO_x boilers and various mercury removal strategies on ash chemical and physical properties.
- 3. To predict the relative leaching risk of oxyanions such as As, B, Mo and Se in common SW Virginia coal mining/ash utilization environments.
- 4. To evaluate the full range of CCP products that will likely be available for back-haul utilization and co-disposal for their suitability as (a) topical mine soil amendments, (b) geochemically stable backfill materials, and (c) bulk-blended treatments for acidic coal waste materials.

Background Issues and Related Studies

Acid mine drainage from coal waste piles and other acid forming mine spoils is a major problem in the Appalachian coalfields in general, and a localized problem in the Virginia coalfields. Detailed work by our research group, and others working in the Appalachians, has indicated that coal fly ash is often alkaline, and may be useful as an amendment for acid-forming materials if the appropriate utilization protocols can be developed (Stewart et al., 1997; Daniels et al., 2002). Documented potentially beneficial uses for suitable fly ash materials include its use as a bulkblended additive to offset acid mine drainage from potentially acidic coal refuse materials and as a topical mine soil amendment at rates of up to 20% by volume (approximately 250 tons per acre, incorporated). We also conducted a detailed study of the geotechnical properties of varying mixture ratios of Clinch River (AEP) fly ash and Moss 3 (Alpha Natural Resources) coarse refuse (Albuquerque, 1994) which indicated, among other findings, that significant reductions in saturated hydraulic conductance are associated with the admixture of dry fly ash into coarse refuse. However, fly ash also contains a number of potentially toxic trace elements which are leachable under certain conditions, particularly if the ash is exposed to highly acidic drainage (Stewart et al., 2001). Thus, our overall findings were generally positive with respect to the beneficial reuse potential of coal fly ash, but they did contain significant cautionary results.

The body of work discussed above was focused entirely upon class F fly ash materials since they constituted the vast majority of CCP's generated in the mid-Atlantic region at that time. However, changes in air quality regulation and resultant changes in air emission technologies over the past decade have led to major changes in the type and properties of CCP's that are now available for back-haul to the Virginia coalfields. First of all, increasing quantities of flue gas desulfurization (FGD) sludges are now being generated as separate CCP's or mixed with fly ash. The advent of low NOx boilers has led to significant concentrations of ammonia in many CCP's. Mercury removal from flue gas has recently emerged as a federal air emission regulatory priority. Depending on which control technology is utilized, FGD and fly ash will become more enriched in Hg at certain plants, while other plants will utilize injected activated charcoal as a sorbent which may lead to higher ash concentrations of a range of metals in addition to Hg. One major secondary effect of increasing ammonia and carbon levels in CCP's is that they have substantial negative effects on the marketability of CCP's for use in cement admixtures or block manufacturing. Thus, the pressure for land application and/or mine utilization would be expected to increase. On a positive note, however, both of these additives could substantially improve the soil amendment properties of CCP's.

Our previous work on CCP's (Daniels et al., 2002) focused primarily on the potential water quality benefits and risks of fly ash utilization in various mine environments, with a principal focus upon bulk acid-base balances and heavy metal (Cu, Zn, Fe, Al, Mn, etc.) mobility to local ground-water. However, we did not evaluate the possibility of As, Se, and Mo mobility in ash/refuse leachates in detail for a variety of technical reasons combined with a lack of focused "regulatory concern" at the time. However, the current regulatory climate is placing much greater focus on the potential for As, B and Se mobility from waste disposal and utilization environments on/in active coal mines, along with a strong emphasis on defining Hg levels and mobility in coal combustion products in general. As just one example of the current regulatory

climate, the USEPA recently reaffirmed its 1993 position that exempted CCP's from regulation as RCRA subtitle C wastes, but specifically reserved judgment on the use of CCP's in coal mining environments. This delayed decision for mining environments is due largely reports of sulfate and borate migration to local ground-water wells from CCP disposal fills in midwestern surface coal mines. Thus, the prediction of the relative mobility of As, B, Hg, Se, Mo, and other potentially water-soluble trace ions is the particular focus of this research program.

Throughout the 1990's, we worked very closely with VDEQ and VDMLR to prepare regulatory guidelines for the beneficial reuse of coal fly ash in mined land environments. As a part of that process we developed the background technical materials and proposed testing standards for the 1994 VDEQ rules, and then we participated in the development of the specific mined land utilization guidelines for VDMLR. While we believe that those guidelines and their underlying assumptions are still quite appropriate for the utilization of the typical coal fly ash materials that we studied in the 1990's, we are not certain of their current applicability to the full range of CCP's and associated properties as discussed above.

Research Methods and Procedures

This study was originally proposed as a three-year effort, and was initiated in late January of 2004. Work in the first full year (2004/2005) will be focused upon sampling and characterizing a broad sample set (minimum 10 to 15) of CCP's currently being generated by coal-fired utilities burning primarily SW Virginia coals. The second full year of the study will focus on the use of various laboratory methods to estimate the potential mobility of various elements of concern (including As, Hg, Mo, Se and B) from CCP treated mine soils or from coal waste/mine spoil/CCP co-disposal fills. In the third year, we will evaluate the plant growth response to various CCP's (including ammoniated and activated C treated materials), and determine which CCP components should be used to limit maximum land application rates for the wide variety of CCP's that likely to be generated by the mid 2000's. In the final year of the study, we will also integrate our complete findings into an overall summary report and synthesis document on the nature of CCP's in relation to mined land utilization on/in coal mines.

Detailed Methods for Year One (2003-2004)

Over the first six months of the study, we worked with the SW Virginia coal industry and our local mid-Atlantic coal fired utilities to determine the 10 to 15 CCP's that are most representative of those currently being generated from primarily Virginia coal. Furthermore, we are making a detailed cooperative review of (1) any major process modifications that have occurred since the mid-1990's at the various utilities that may have affected the basic properties of the CCP's generated, and (2) any proposed future modifications (e.g. enhanced Hg removal via wet scrubbing or charcoal injection) that are anticipated. Finally, over the coming year, we will summarize any background analytical data that the utility staffs are willing to provide to us on their ash properties over time, water quality parameters from ash disposal areas, etc. Note: all ash sources will be assigned numbers for reporting and data presentation purposes, and their names/locations will not be published.

Next, we will work with our industry cooperators to collect representative composite samples of their current CCP streams at each plant. When and where possible, we will also make arrangements with cooperators to have a similar composite sample taken at bi-monthly intervals for one year (six composite samples) to allow us to study temporal variability.

The primary composite samples will be then subjected to the following analyses:

- 1. pH and Electrical Conductance (EC).
- 2. Water extractable ions in saturated paste EC extract.
- 3. Total elemental analysis.
- 4. Sequential fractionation analysis (e.g. water soluble, exchangeable, acid-extractable, oxide-bound, total, etc.) to determine the speciation/partitioning of all major and minor elements of environmental concern, including As, Se and Hg.
- 5. Calcium carbonate equivalence (CCE).
- 6. Toxicity Characteristic Leachate Procedure (TCLP) for priority metals.
- 7. 3-Tier extraction as discussed below (on selected samples).

The bi-monthly temporal variability samples will be subjected to the following analyses:

- 1. pH and EC
- 2. Total As, Se and Hg
- 3. CCE
- 4. Other analyses as indicated by our studies and industry queries

Progress to Date

Our efforts over the first six months of this program have been focused on (1) obtaining the analytical capability to quantify oxyanions like As, B, Mo, and Se at concentrations < 5 ppb, (2) testing new laboratory procedures for the evaluation of leachable inorganic constituents from CCPs, and (3) making contacts with coal fired utilities and obtaining a large suite of regional samples for intensive testing in the coming project year.

Improving our Analytical Capability

The detection limits of Inductively Coupled Plasma (ICP) Spectroscopy and Atomic Absorption (AA) Spectroscopy are generally not adequate for concentrations of < 50 ppb. The recent acquisition of a hydride generation system for our existing AA has given us the potential to detect As, Se, and ionizable Hg (as well as other elements) at sub-ppb concentrations. However, the addition of highly specialized equipment is not a matter of "plug it in and it is ready to use". The analysis of any new sample to be run through the hydride generation system requires a pretreatment step for each specific element of interest. After extensive testing with known standard solutions, we now have the ability and confidence to analyze solution samples with concentrations at sub part per billion for the elements mentioned above.

Testing Laboratory Procedures

Laboratory procedures for the evaluation of inorganic constituents from CCPs focus on 1) the chemical characterization of the CCPs with regard to the elements of concern, and 2) the leaching potential of those elements.

Chemical Characterization

The chemical characterization of CCPs by detailed sequential fractionation for the elements of interest can be related to the elements' relative solubility/bioavailability. This data the can be used in geochemical modeling/speciation procedures to determine the likely solubility controlling solid phases, and soluble ion species as affected by leachate pH, Eh and solute conditions.

The sequential extraction procedure by Tessier et al. (1979) uses a series of extractant fluids to dissolve metals associated with particular ligand phases in a complex sample. The procedure involves sequential extraction with 1M MgCl₂ for soluble/extractable metals, followed by the extraction with 1M Acetic Acid/NaOac for carbonates, followed by the extraction 0.04 M hydroxylamine hydrochloride/acetic acid for Fe/Mn oxide bound forms, followed by extraction with H₂O₂/ammonium acetate/HNO₃ for organically bound metals, and finally, HF/HNO₃ for residual bound metals.

Evaluating Actual Leaching Potentials

A major limitation to most tests designed to simulate element release (leaching) under specific environmental scenarios is that these tests do not provide information on actual release under a wide range of expected disposal or land application geochemical environments. This is the main criticism of the Toxicity Characteristic Leaching Procedure (TCLP) used by the USEPA for regulatory screening of potentially toxic waste materials. In the case of highly alkaline fly ash or non-acidic coal refuse, for example, the TCLP procedure tests these materials in an acidic (glacial acetic acid) environment. This environment may be drastically different from the conditions governing leachability under actual disposal conditions.

We have been participating in an inter-laboratory study coordinated by USDOE-Pittsburgh that is testing various methods for evaluating leaching. The 3-Tier Leaching Protocol (Kosson et al., 2002) appears potentially suitable in its application to CCPs and coal refuse. The method takes a multi-faceted approach by looking at 1) the solubility and release as a function of pH, 2) the solubility and release as a function of the liquid-solid ratio of the test conditions, and 3) the mass transfer rate from the solidified waste or compacted material.

For example, Figure 1 shows the release of lead (Pb) from a cementitious synthetic waste as a function of pH. The application of the 3-Tier method may provide much more useful information on As, Se, Mo, and Hg release from CCPs and coal refuse than the TCLP method. However, the 3-Tier method is very time-consuming and expensive. Hopefully, by combining data from conventional extractions, the 3-Tier method and the sequential extraction technique discussed

earlier, we will be able to determine an optimal approach for estimating environmental leaching risk of these important elements.

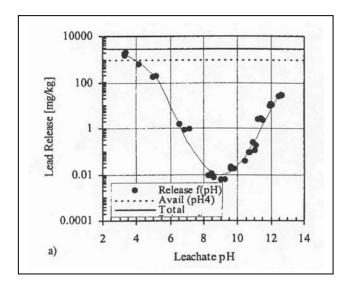


Figure 1. Effect of leachate pH on lead release from Kosson et al. (2002).

We have now established the methodological protocol to run these various tests at our laboratory. In the coming months, we will be subjecting a large number of CCPs to the discussed extraction methods and expect to gain a better understanding of the properties and potential water quality effects of CCPs and coal refuse.

Sample Set Development

We have agreements with representatives of American Electric Power and Dominion Power to gather and collect samples of all CCP's for all of their plants in our region over the next three months. Due to our current parallel project with Alpha and AEP, we have also been collecting a series of samples of fly ash from the Carbo plant in southwest Virginia that we have been using for the methodological work described above and to assess within plant variability over time.

Expected Results and Benefits for Southwestern Virginia

The appropriate utilization of CCP's on and in southwest Virginia coal mines could directly improve water quality via the offset of acid mine drainage production and increased mine soil productivity. The southwest Virginia coal and transportation industries could also realize substantial efficiencies and improved marketing arrangements through the back-haul of CCP's from coal-fired utilities. However, any such large-scale utilization of CCP's on or in mined landscapes must appropriately balance potential benefits against any long term potentials for

water quality degradation via losses of potentially mobile constituents such as As, B or Se. Finally, we collectively know very little about the abundance and mobility of As, Hg and Se in CCP's, mine spoils and coal processing waste materials in general. This critical information will also be supplied by this research program.

Acknowledgements

We greatly appreciate the support of the Powell River Project, Alpha Natural Resources (Matt Cartier) and American Electric Power (Greg Keenan and Claudia Banner). The assistance of W.T. Price and Stephanie Gordon the laboratory is also appreciated.

Supporting Literature/Related Studies

Albuquerque, A.A. 1994. Geoenvironmental Aspects of Coal Refuse-Fly Ash Blends. M.S. Thesis, Virginia Tech, Blacksburg, 133 pp.

Daniels, W.L., B.R. Stewart, K.C. Haering and C.E. Zipper. 2002. The Potential for Beneficial Reuse of Coal Fly Ash in Southwest Virginia Mining Environments. Publication Number 460-134, Va. Coop. Extension Service, Blacksburg. http://www.ext.vt.edu/pubs/mines/460-134/460-134.html

Kosson, D.S., H.A. van der Sloot, F. Sanchez, and A.C. Garrabrants. 2002. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Env. Engineering. Sci. 19:3, 159-204.

Stewart, B.R., W.L. Daniels and M.L. Jackson. 1997. Evaluation of leachate quality from the codisposal of coal fly ash and coal refuse. J. Env. Quality 26; 1417-1424.

Stewart, B.R., W.L. Daniels, L.W. Zelazny and M.L. Jackson. 2001. Evaluation of leachates from coal refuse blended with fly ash at different rates. J. Env. Qual. 30:1382-1391.

Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:7, 844-851.